

Corporate Center Frankfurt

The Squaire Am Flughafen D 60549 Frankfurt am Main Germany

The operating allnex group is legally owned by Allnex Holdings S.à r.l., a company based in Luxembourg, which also provides long term strategic decisions relating to its investment in allnex.

www.allnex.com

www.allnex.com

LRA001-WW-0218

TMI[®] (META)

Unsaturated Aliphatic Isocyanate

About allnex

Table of Contents

TMI [®] (META) Unsaturated Aliphatic Isocyanate
Uses of TMI
Modified Polymers Containing TMI
Improved Performance of Modified Latex Films Co
Reactivity Ratios of TMI
Improved Tensile Properties of a Modified Latex C
Blocked Isocyanates
Deblock Temperatures of Tertiary Aliphatic Isocya
Physical Attributes of Blocked Isocyanates
Cure Temperatures of Blocked TMI Self-Crosslinki

Facts & Figures

- Global company with over €2.1 billion in sales
- Broad Technology portfolio: liquid coating resins, energy curable resins, powder coating resins, crosslinkers and additives, composites and construction materials
 Approximately 4000 employees
 Customers in more than 100 countries

• 33 manufacturing facilities

- 23 research and technology centers
- 5 joint ventures
- Extensive range of solutions for key coating segments: automotive, industrial, packaging coating and inks, protective, industrial plastics and specialty architectural

With manufacturing, R&D and technical facilities located throughout Europe, North America, Asia Pacific and Latin America, allnex offers global and reliable supply of resins and additives combined with local, responsive customer support.

	1
	4
	5
ntaining TMI	5
6	ŝ
ontaining TMI6	ŝ
	7
nates	7
	3
ng Copolymers	3

TMI^{®1} (META) Unsaturated Aliphatic Isocyanate

α,α -Dimethyl meta-Isopropenyl Benzyl Isocyanate

Physical Properties

Chemical Abstract Registry No.	2094–99–7
Molecular Weight	201.3
NCO (Isocyanate group) Content, % By Weight	20.9
Appearance	Clear, Colorless Liquid
Boiling Point, 1 atm	270°C
Density, g/mL. 25°C	1.0
Viscosity, cp, 27°C	3.0
Vapor Pressure, Torr, 100°C	2

Uses of TMI

Polymer Modification

Use NCO to attach desired functionality and polymerize.

Copolymerize TMI monomer with a variety of other monomers to create a polymer with free isocyanate groups available for crosslinking.

Coatings

Blocked version in acrylic copolymer for 1K acid etch resistant topcoat.

Unblocked version in acrylic copolymer for ambient cure paint.

Plastics Modification

Grafting to PP and TPO for improved surface properties.

Modified Polymers Containing TMI®

Two Approaches

React –NCO group and then polymerize to incorporate specic functional groups.

- deblock and cure
- rheology modiers
- polymerizable surfactants
- wet adhesion modifers

Copolymerize TMI monomer into latex and moisture cure for selfcrosslinked lms for improved strength and scrub resistance.

 \rightarrow NCO +H₂O OCN \rightarrow \rightarrow NHCONH \rightarrow +CO₂

Improved Performance of Modified Latex Films Containing TMI

Critical Parameters

Polymerization conditions ¹	 polymerize <40°C to prevent hydrolysis increasing the concentration of TMI monomer can reduce polymerization rate 2-5 wt% recommended 		
Location of TMI in latex	 location a ects both Im properties and storage stability optimum location needs to be determinined for particular application 		
Catalyst choice	 catalyst affects film performance incorporation of 2-5 wt% of (meth) acrylic acid recommended for speed of cure; will reduce NCO stability in latex 		

¹ Data obtained from sponsored research program at the Emulsion Polymers Institute, Lehigh University

Reactivity Ratios of TMI®

Bulk Polymerization at 70°C1 TMI as M1			Bulk Polymerization at 110°C2 TMI as M1	
M_2	r ₁	r ₂	M ₂	r ₁
Styrene	0.16	0.84	Styrene	0.72
MMA	0.03	0.43	MMA	0.62
BA	0.38	0.08	BA	0.53

Improved Tensile Properties of a Modified Latex Containing TMI

Improved tensile property poly (MMA/ BA/TMI/MAA) (40/55/3/2) compared to poly (MMA/BA) (45/55) control. Cast lms dried at room temperature for 10 days prior to testing.

Tensile property of poly (MMA/BA/TMI/ MAA) latex stored at room temperature

for one year compared to that of the fresh latex; TMI = 3%, MAA = 2%.

10 days.

Cast films dried at room temperature for

 r_2

0.80

0.31 0.13

Improved Tensile Properties of one-year-old Modified Latex Containing TMI

¹ Lehigh data calculated using Kelen Tudos Method, J. Marcomol. Sci, Chem A9 (1), 1 (1975) ² TMI (META) Unsaturated Aliphatic Isocyanate Technical Data Sheet, Allnex

Blocked Isocyanates

Products Based on TMxdI[®] and TMI[®] in Powder Coatings Products deblock at lower temperature vs. HDI and IPDI

TMI in Solvent Borne Coatings

Acid etch resistant OEM topcoat system based on TMI is reported in patent literature

Deblock Temperatures of Tertiary Aliphatic Isocyanates

Blocking Group	NCO Onset, Deblock Temperature °C
3,5-Dimethylpyrazole	55 - 65
2,6-Dimethyl-4-Heptanone Oxime	60 - 75
Methyl Ethyl Ketoxime	65 - 80
2-Heptanone Oxime	70 - 80
1,2,4-Triazole	80 - 90
ε-Caprolactam	95 - 105
Nonylphenol	145 - 165
t-Butanol	150 - 185
Propylene Glycol	> 180
Isopropanol	190 - 210
Methanol	200 - 220
n-Butanol	200 - 230
n-Hexanol	215 - 230
n-Pentanol	215 - 235

Physical Attributes of Blocked Isocyanates

Allnex's Isocyanate	Blocking Material	Physical State	Melting Point °C
	МЕКО	Liquid	-
	3,5-Dimethylpyrazole	Liquid	-
	n-butanol	Solid	~ 27
TMI®	Methanol	Solid	~ 37
	t-butanol	Solid	~ 60
	ε–Caprolactam	Solid	~ 70
	Nonylphenol	Solid	~ 80
	МЕКО	Resinous	-
TMXDI®	n-butanol	Solid	~ 68
	ε–Caprolactam	Solid	~ 117
	1,2,4-Triazole	Solid	~ 117
	Acetone Oxime	Solid	~ 125
	Methanol	Solid	~ 130

Cure Temperatures of Blocked TMI Self-Crosslinking Copolymers

Blocking Agent	Temperature ¹ , °C
Methyl ethyl ketoxime	120
N-Hydroxysuccimide	130
ε–Caprolactam	135

NOLES		

Disclaimer: allnex Group companies ('allnex') decline any liability with respect to the use made by anyone of the information contained herein. The information contained herein represents allnex's best knowledge thereon without constituting any express or implied guarantee or warranty of any kind (including, but not limited to, regarding the accuracy, the completeness or relevance of the data set out herein). Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of allnex or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is adapted for any specific use, performance or result and that product and/or information do not infringe any allnex and/or third party intellectual property rights. The user should perform his/her own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights of allnex and/or third parties remains the sole responsibility of the user.

Notice: Trademarks indicated with [®], [™] or * as well as the allnex name and logo are registered, unregistered or pending trademarks of Allnex IP s.à.r.l. or its directly or indirectly affiliated allnex Group companies.

©2018 allnex Group. All Rights Reserved.

Matac