

Corporate Center Frankfurt

The Squaire Am Flughafen D 60549 Frankfurt am Main Germany

The operating allnex group is legally owned by Allnex Holdings S.à r.l., a company based in Luxembourg, which also provides long term strategic decisions relating to its investment in allnex.

www.allnex.com

www.allnex.com

ILRA002-WW-0218

TMXDI[®] (META)

Aliphatic Isocyanate

About allnex

Facts & Figures

- Global company with over €2.1 billion in sales
- Broad Technology portfolio: liquid coating resins, energy curable resins, powder coating resins, crosslinkers and additives, composites and construction materials
- Approximately 4000 employees
- Customers in more than 100 countries

• 33 manufacturing facilities

- 23 research and technology centers
- 5 ventures
- Extensive range of solutions for key coating segments: automotive, industrial, packaging coating and inks, protective, industrial plastics and specialty architectural

Table of Contents

Application Areas for Technology...

- TMXDI (META) Aliphatic Isocyanate for Dispersions
- Why use TMXDI monomer over other isocyanates?
- Physical Properties
- Chemistry Characteristics
- Polyurethanes Intermediates (Prepolymers)
- NCO (Isocyanate group) Terminated Prepolymers
- Advantages in Prepolymer Formation
- Prepolymer Viscosities

Physical Property Characteristics of Urethanes

- Made From Aliphatic Diisocyanate Monomers
- Dispersion Structure / Property Relations
- **Dispersion Process**
- Formulation Parameters
- Processing Parameters
- Dispersing Parameters
- Chain Extension Parameters
- Aqueous Polyurethane Dispersions
- Starting Point Polyester Formulations
- Key Benefits Offered by Dispersions Based on TMXDI

Appendix I

Example Lab Scale Preparation & Calculations

Isocyanate Determination

With manufacturing, R&D and technical facilities located throughout Europe, North America, Asia Pacific and Latin America, allnex offers global and reliable supply of resins and additives combined with local, responsive customer support.

TMXDI^{®1} (META) Aliphatic Isocyanate

Goal

Provide information on the performance benefits, chemistry, and processing advantages of TMXDI monomer for water-based coating technology as it applies to polyurethane dispersions

Opportunities

- Provide a coating technology that allows for the preparation of solvent-free waterborne polyurethane dispersions
- Develop TMXDI monomer based polyurethane coatings with a broad range of hardness and performance propertie

TMXDI[®] (META) Aliphatic Isocyanate for Dispersions

Why use TMXDI monomer over other isocyanates?

- TMXDI is uniquely suited for waterborne application
- Manufacturing advantages
- Processing ease due to low prepolymer viscosity
- Solvent free, no acetone or NMP
- Higher through-puts
- Performance advantages
- Broad range of properties obtainable
- Flexible coatings with superior adhesion
- Exceptional toughness
- Improved aluminum flake orientation
- FDA Sanction for use in food packaging adhesives under 21CFR 175.105, Non Food Contact

Application Areas for Technology

Two-Component

Specialty Coatings

Roof Coatings

Floor Coatings

Flexible Coatings

Plastic Coatings

Potting/Encapsulation

Sealants RIM

Lacquers

Flexible Coatings

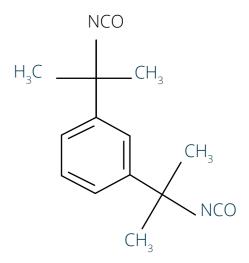
Adhesives

Aqueous Dispersions

Adhesives Specialty Coatings Roof Coatings Floor Coatings Flexible Coatings Plastic Coatings

One Shot

Castable Elastomers Adhesives Sealants


UV Curable

Floor Coatings Flexible Coatings Plastic Coatings

Moisture Cure Roof Coatings Floor Coatings Specialty Coatings Sealants

Physical Properties

Molecular Formula	C ₁₄ H ₁₆ N ₂ O ₂
Molecular Weight	244.3
NCO Content, % By Weight	34.4
Equivalent Weight	122.1
Boiling Point, °C mmHg	150 (3 mmHg)
Melting Point, °C	-10
Vapor Pressure, mmHg @ 25°C	0.003
Flash Point, °C (Setaflash Closed Cup)	153
Autoignition Point, °C	450
Solubility	Inert organic solvents

META-Tetramethylxylylene Diisocyanate

TMXDI[®] (META) Aliphatic Isocyanate

Chemistry Characteristics	 TMXDI is an aliphatic isocyanate because the NCO is not conjugated to the aromatic ring Excellent light stability and exterior durability Steric hindrance by dimethyl groups provides lower reactivity and reduces hydrogen bonding Lower reactivity with water Controlled reactivity by use of catalysts No self-condensation reactions leading to branching, e.g. allophanate, biuret, isocyanurate Minimal reactivity with carboxyl groups Significantly lower prepolymer viscosity Equal isocyanate reactivity Higher reaction temperatures possible for prepolymer formation 100°C-120°C not a problem Stable viscosity in absence of wate
Polyurethanes Intermediates (Prepolymers)	 Almost all polyurethane-polyureas are prepared via NCO prepolymer intermediates The possibility to tailor-make any desirable intermediate by the polyaddition reaction is an important attribute
NCO-Terminated Prepolymers	 These are prepared by the reaction of di- or polyhydroxyl compounds with an excess of diisocyanates Typical molecular weight 7,000 - 12,000 Further reaction with difunctional chain extenders gives rise to the fully reacted high molecular weight polyurethane-polyurea network
Advantages in Prepolymer Formation	 Effects of reduced hydrogen bonding Low prepolymer viscosity Higher ionic containing prepolymer can be processed Trifunctional polyols should be added to maintain film properties when replacing other isocyanates with TMXDI Processing advantages Hot prepolymer can be pumped with ease (no viscosity build-up) Higher prepolymer temperature (120°C) may be used to reduce viscosity No solvent needed to reduce viscosity Solvent removal step eliminated Slower reaction rate allows heated prepolymer to be added into water below 40°C with minimal hydrolysis

Prepolymer Viscosities Formulated to Equal NCO Equivalents

Brookfield Viscosity (mPa•s @ 100°C)

Polyol	Prepolymer % Solids	TMXDI®	H ₁₂ MDI	IPDI
Tone 230/305	65 (Toluene)	220	970	340
Tone 240	100	1,255	1,965	1,540
HD-AA	100	2,300	100,000	100,000
HD-AA	85 (NMP)	400	1,300	780
BD-11	85 (NMP)	600	4,050	1,500
HD-AA-IPA	100	2,700	200,000	4,500

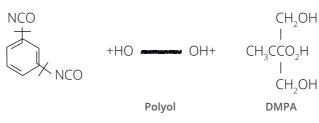
Physical Property Characteristics of Urethanes Made From Aliphatic Diisocyanate Monomers

Property	TMXDI	IPDI	H ₁₂ MDI
Hardness	Softer	Harder	Harder
Tensile Strength	Lower	Higher	Higher
Elongation	Higher	Lower	Lower
Hydrolytic Stability	Better	Good	Good
Clarity	Clear	Clear	Clear
Prepolymer Viscosity	Low	Middl	High

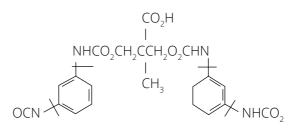
• TMXDI cannot be directly substituted due to:

- NCO content

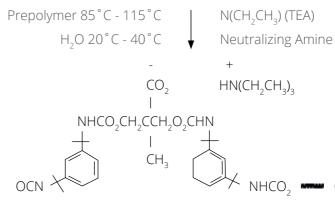
- Reduced hydrogen bonding

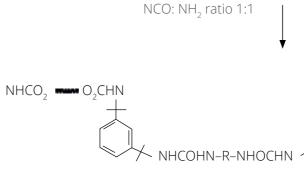

Dispersion Structure / Property Relations

Formulation Variables


Polyols	Effect
Trifunctional Caprolactones, TMP	Toughness Hardness Chemical/Solvent resistance Humidity resistance
Polyethers	Softness Flexibility Adhesion
Chain Extenders	Effect
2-Methyl Pentamethylene Diamine (Dytek A)	Toughness with elongation
Diethylene Triamine (DETA)	Hardness Chemical/Solvent resistance
Hydrazine Hydrate (HH)	Soft-Feel
Ethylene Diamine (EDA)	Toughness with elongation

Dispersion Process




NCO-Terminated Prepolymers

Hydrophilic Modified NCO-Terminated Prepolymer

Aqueous Polyurethane-Polyurea Dispersion

120°C - 130°C ->

O₂CHN NCO

O₂CHN NCO

H₂N-R-NH₂ Primary Amine CO_2 HN(CH₂CH₃)₃ NHCO,CH,CCH,O,CHN

Formulation Parameters

Dispersing Parameters

NCO:OH	 1.4 to 1.7:1 to control molecular weight of isocyanate terminated prepolymer (7,000 - 12,000 MW typical) 	Water Neutralization Process
Trimethylol Propane (TMP)	Trifunctional polyol is added for controlled branching which improves strength and resistance properties	
Dimethylol Propionic Acid (DMPA)	 The ionic content is a major factor for controlling the particle size of the dispersion Low ionic content (acid number 16) dispersion must be neutralized to 120% to achieve a stable dispersion during production Increasing acid number to 20 (4.78 wt% DMPA) widens the processing window, allows lower neutralizing amine level, and allows lower pH of the dispersion 	

Pre-neutralization Process

Processing Parameters

Prepolymer (Intermediate)	Dry nitrogen blanket must be maintained to keep out
	moisture
	 Agitation must be sufficient to ensure proper bulk mixing with high viscosity prepolymers
	 Higher processing temperature may be used (120°C) to speed-up reaction time and lower viscosity
	 Prepolymer temperature must be lowered to 80°C - 85°C when using TEA for pre-neutralized systems Reaction is complete when NCO value is at or below
	theoretical (constant value)Prepolymer may be held at reaction temperatures until the dispersion step
Dispersion Equipment, High Speed	 Use pitched turbine or Cowles blades agitators Size blades so that the ratio of the dispersing vessel diameter to blade is 2 Position blade at least one blade diameter off the bottom Adjust agitator speed to optimize dispersion step Use a closed system (not airtight) dispersing vessel to keep in amine
	 Jacket vessel with sufficient cooling capacity to remove latent heat of prepolymer and reaction exotherm Do not exceed a water temperature of 40°C during dispersion and chain extension steps to avoid NCO wreaction with water

Formulation Parameters

Neutralizing Amine	• Te
	• Tr
	b
	۰D
	• Tł
	si
	• TE
	pi
	pi
	• Tł
	th

 Tertiary amine is charged to the water. The hot prepolymer is added into the water with agitation while simultaneously neutralizing and dispersing the prepolymer Particle size of the dispersion is usually larger Amine volatility can be a problem Accurate prepolymer transfer can be a problem causing uncertainty in % neutralization and chain extension for low ionic content dispersions at 120% neutralization, pH should be 9.3 - 9.5 during dispersion for high ionic content dispersions at 80% neutralization, pH should be 7 - 8 during dispersion Higher prepolymer temperature can be used to reduce viscosity
 Tertiary amine is added to the prepolymer prior to dispersing it in water Particle size of the dispersion is smaller No uncertainty in determining the prepolymer's % neutralization Use lower prepolymer temperatures (80°C - 85°C) to allow the amine to be mixed into prepolymer without volatilizing the amine

Tertiary amines are required

Triethylamine (TEA) is used for its base strength and low boiling point DMAMP-80 can be an alternate for TEA

The level (%) of neutralization has an effect on pH, particle size and appearance for a given ionic content

TEA can be used for water neutralized or pre-neutralized processes. DMAMP-80 used only for water neutralized process (OH group will react)

The % neutralization has an effect on the final viscosity of the dispersion for a given ionic content

Chain Extension Parameters

- The amount of chain extending amine should be calculated to give a stoichiometric addition based on the amount of NCO titrated, and the amount of prepolymer added
- IPDI & H12MDI systems are typically under chain extended (~85%)
- Under chain extension of TMXDI[®] prepolymers can lead to grit formation
- Expect an exotherm. Dilution of the chain extending amine will reduce the exotherm and also prevent shocking the system
- The final pH of the dispersion is normally close to the initial pH of the neutralized dispersed prepolymer. This will happen as the chain extending amine reacts with the isocyanate forming high MW polymer in water

Aqueous Polyurethane Dispersions

Dispersion Characteristics	Prepared without solvents
	No added surfactants
	Low VOC
	Low viscosity
	Shelf stability > 1 Year
	Can be formulated for freeze-thaw stability
Urethane Characteristics	Superior toughness
	- Combination of high tensile strength / elongation
	High elongation
	- Attained for soft and hard systems
	Excellent abrasion resistance

Polyols Used In Starting Point Formulations

Polyols	Туре	Eq. Wt.
A	Hexanediol adipate polyester	500
B1	Neopentyl glycol adipate polyester	500
B2	Neopentyl glycol adipate polyester	250
С	Polytetramethylene ether glycol diol	500
D1	Poly (propylene glycol) diol	500
D2	Poly (propylene glycol) diol	1000
D3	Poly (propylene glycol) diol	240

Abbreviations Used In Formulations

DMPA	Dimethylol propionic acid
TEA	Triethylamine
DMAMP-80	Dimethylamino methyl propanol
Dytek A	Methylpentamethylene diamine
DBTDL	Dibutyl tin dilaurate (catalyst)
NPG	Neopentyl glycol
TMP	Trimethylol propane

Starting Point Polyester Formulations

Dispersions	L. C.	II	III	
Component	Wt%	Wt%	Wt%	
Polyol A	57.50	-	_	
Polyol B1	_	27.25	31.82	
Polyol B2	-	22.49	7.08	
TMXDI monomer	38.10	45.00	52.11	
DMPA	3.82	4.50	4.49	
TMP	0.57	0.75	0.50	
NPG	-	-	3.99	
DBTDL	0.01	0.01	0.01	
Total	100	100	100	
% NCO	5.38	5.86	7.49	
NCO:OH	1.70	1.91	1.72	
Acid Number	16.0	18.8	18.8	

Dispersion	Wt	Wt	Wt		
TEA	3.46	4.07	_		
DMAMP-80	-	-	4.59		
Dytek A	7.43	8.09	10.38		
Water	196.1	196.7	200.4		
Total Dispersion	307.0	308.9	315.37		
% Neutralization	120	120	100		
Free Film Properties					
Tensile strength, MPa	46.6	37.7	41.8		
psi	6800	5500	6100		
% Elongation @ Break	400	260	30		
100% modulus, MPa	6.5	23.3	_		
psi	950	3400	_		
Coating Properties					
Sward Hardness	18	55	58		
Knoop Hardness	1	5.7	13.8		
Pencil Hardness	2Н	2Н	3Н		
Gloss 20° / 60°	89/109	87/106	91/109		
Glass Transition Tg (°C)	-31.25	-15.34	-26.42		

Key Benefits Offered by Dispersions Based on TMXDI®

- Very low VOC
- 36 g/L (0.3 lb/gal) from neutralizing amine
- Either zero or limited amount of organic solvent required in formulating
- Formulator has choice of solvent
- Coating toughness
- Combination of high tensile strength with high elongation and tear strength
- Excellent abrasion resistance

- Coating flexibility
- Particularly suited for coating flexible substrates
- Harder coatings maintain a good degree of flexibility
- Coating appearance
- High gloss; 20° gloss >88
- Excellent gloss retention
- Excellent coating adhesion - Adheres well to most metallic and non-metallic surfaces

Appendix - Example Lab Scale Preparation & Calculations

Prepolymer Formula & Preparation*

Components	Wt%	Wt.	Eq. Wt.	Eq.
1,6 Hexane-Diol Adipate Polyester (OH #114)	57.57	252.29	492.1	0.513
TMXDI® monomer Mw 244/2	37.96	166.36	122.0	1.364
Trimethylol Propane (TMP) Mw 135/3	0.54	2.36	45.0	0.052
Dimethylol Propionic Acid (DMPA) Mw 134/2	3.83	16.77	67.0	0.250
Dibutyl Tin Dilaurate (T-12) (10% Soln. in NMP)	0.10	0.44	-	-
	100.00	438.22		

* 2 - 4 Hrs @ 120°C

Theoretical % NCO = 5.26 Actual % NCO Titrated = 4.87 Viscosity @ 80°C = 5500 mPa·s, Brookfield Cone-plate Sp.52, 10 RPM

Dispersion Preparation

779.02
13.81
400
26.92

Calculations

Theoretical % NCO							
	(NCO EQ Total OH EQ.) x 42 x 100						
	Formulation Wt.						
Neutralizing Amine Amount added is determined by calculating	Example:						
the carboxyl eq. of the prepolymer.	Prepolymer	DMPA Wt. (3.83%)		MW DMPA		EQ.	
	400 Grams	15.32 Grams	÷	134	=	0.114	
	Carboxyl Eq.	MW TEA		TEA Added	+	20% Excess Total	
	0.114 x	01 =	÷	11.51 Grams	+	2.30 Grams = 13.81 gms	
Chain Extension Amine Calculating the NCO equivalent of the prepolymer and adding stoichiometric amount of amine. Exact % NCO is determined from titration methods.	Example: $\frac{\% NCO}{4.87}$ $\stackrel{NCO MW}{42}$ 400 Grams Prepolymer 26.92 Grams Dytek A diamine			TEK A MW = 11 116 x 58 Eq. Wt.		= 6.73 gms/100 gms Prepolymer	

Key Benefits Offered by Dispersions Based on TMXDI®

Reagents

n-Dibutylamine/Toluene solution:

1080 ml dry n-dibutylamine diluted to 4000 ml with dry toluene

1N HCl 0.04% Aqueous Bromophenol Indicator

Procedure

1. Accurately weigh sample* into a clean, dry 500 ml Erlenmeyer flask.

2. Add 100 ml (graduate) dry toluene.

3. Pipette 25 ml n-dibutylamine/toluene solution into flask containing sample.

4. Heat solution while stirring to dissolve.

5. Cool solution to ambient temperature.

6. Prepare a blank using 100 ml toluene and 25 cc n-dibutylamine/toluene solution.

7. Add 200 cc dry isopropanol and approximately 0.5 ml n-bromophenol indicator to blank.

8. Titrate blank with 1N HCl to a yellow color which persists for a least 1 minute. Call this Solution A.

9. Add 200 cc of isopropanol and approximately 0.5 ml of n-bromophenol indicator to flask containing sample.

Titrate to a yellow color as in Step #8. Call this Solution B.

Calculation:

% NCO = (Solution A - Solution B) 4.2

g. sample

Notes		

Notice: Trademarks indicated with[®], [™] or * as well as the allnex name and logo are registered, unregistered or pending trademarks of Allnex IP s.à.r.l. or its directly or indirectly affiliated allnex Group companies.

Disclaimer: allnex Group companies ("allnex") decline any liability with respect to the use made by anyone of the information contained herein. The information contained herein represents allnex's best knowledge thereon without constituting any express or implied guarantee or warranty of any kind (including, but not limited to, regarding the accuracy, the completeness or relevance of the data set out herein). Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of allnex or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is adapted for any specific use, performance or result and that product and/or information do not infringe any allnex and/or third party intellectual property rights. The user should perform its own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights of allnex and/or third parties remains the sole responsibility of the user.